30 research outputs found

    The passive operating mode of the linear optical gesture sensor

    Full text link
    The study evaluates the influence of natural light conditions on the effectiveness of the linear optical gesture sensor, working in the presence of ambient light only (passive mode). The orientations of the device in reference to the light source were modified in order to verify the sensitivity of the sensor. A criterion for the differentiation between two states: "possible gesture" and "no gesture" was proposed. Additionally, different light conditions and possible features were investigated, relevant for the decision of switching between the passive and active modes of the device. The criterion was evaluated based on the specificity and sensitivity analysis of the binary ambient light condition classifier. The elaborated classifier predicts ambient light conditions with the accuracy of 85.15%. Understanding the light conditions, the hand pose can be detected. The achieved accuracy of the hand poses classifier trained on the data obtained in the passive mode in favorable light conditions was 98.76%. It was also shown that the passive operating mode of the linear gesture sensor reduces the total energy consumption by 93.34%, resulting in 0.132 mA. It was concluded that optical linear sensor could be efficiently used in various lighting conditions.Comment: 10 pages, 14 figure

    EUDEM2: Overview and Some Early Findings

    Get PDF
    After the overwhelmingly positive feedback and encouragement in response to the EUDEM1 project, work on EUDEM2 has begun. This article describes the second version of the EUDEM study and some of its initial results

    A Detector of Sleep Disorders for Using at Home, Journal of Telecommunications and Information Technology, 2014, nr 2

    Get PDF
    Obstructive sleep apnea usually requires all-night examination in a specialized clinic, under the supervision of a medical staff. Because of those requirements it is an expensive and a non-widely utilized test. Moving the examination procedure to patients’ home with automatic analysis algorithms involved will decrease the costs and make it available for larger group of patients. The developed device allows all-night recordings of the following biosignals: three channels ECG, thoracic impedance (respiration), snoring sounds and larynx vibrations. Additional information, like patient’s body position changes and electrodes’ attachment quality are estimated as well. The reproducible and high quality signals are obtained using the developed and unobtrusive device

    >

    No full text

    Analysis of Properties of an Active Linear Gesture Sensor

    No full text
    Basic gesture sensors can play a significant role as input units in mobile smart devices. However, they have to handle a wide variety of gestures while preserving the advantages of basic sensors. In this paper a user-determined approach to the design of a sparse optical gesture sensor is proposed. The statistical research on a study group of individuals includes the measurement of user-related parameters like the speed of a performed swipe (dynamic gesture) and the morphology of fingers. The obtained results, as well as other a priori requirements for an optical gesture sensor were further used in the design process. Several properties were examined using simulations or experimental verification. It was shown that the designed optical gesture sensor provides accurate localization of fingers, and recognizes a set of static and dynamic hand gestures using a relatively low level of power consumption

    Issues and challenges in artificial intelligence

    No full text
    The importance of human-computer system interaction problems is increasing due to the growing expectations of users on general computer systems capabilities in human work and life facilitation. Users expect system which is not only a passive tool in human hands but rather an active partner equipped with a sort of artificial intelligence, having access to large information resources, being able to adapt its behavior to the human requirements and to collaborate with the human users.   This book collects examples of recent human-computer system solutions. The content of the book is divided into three parts. Part I is devoted to detection, recognition and reasoning in different circumstances and applications. Problems associated with data modeling, acquisition and mining are presented by papers collected in part II and part III is devoted to Optimization

    Human-computer systems interaction backgrounds and applications 3

    No full text
    This book contains an interesting and state-of the art collection of papers on the recent progress in Human-Computer System Interaction (H-CSI). It contributes the profound description of the actual status of the H-CSI field and also provides a solid base for further development and research in the discussed area. The contents of the book are divided into the following parts: I. General human-system interaction problems; II. Health monitoring and disabled people helping systems; and III. Various information processing systems. This book is intended for a wide audience of readers who are not necessarily experts in computer science, machine learning or knowledge engineering, but are interested in Human-Computer Systems Interaction. The level of particular papers and specific spreading-out into particular parts is a reason why this volume makes fascinating reading. This gives the reader a much deeper insight than he/she might glean from research papers or talks at conferences. It touches on all deep issues that currently preoccupy the entire field of H-CSI

    Problems of 3D reconstruction and visualisation in EIT

    No full text
    In the paper different algorithms of electroimpedance tomography (EIT) are presented. The properties of EIT are discussed. Problems of proper modelling of measurement electrodes are introduced. Results obtained from developed 3D reconstruction algorithm are presented. For practical reasons the number of measurement electrodes should be increased. Measurement errors should be small, to avoid amplifying them by reconstruction algorithm. Assumed conductivity distribution for the first iteration should be as close to the real one as possible. Reconstruction time (of absolute value of conductivity) is still a problem for practical applications
    corecore